Google Search Major Data Structures Documentation
Wall Script
Follow Me:
Sunday, September 28, 2008

Google Search Major Data Structures Documentation

Google Search Major Data Structures Documentation submited by Sergey Brin and Lawrence Page in Stanford University

Previous Article Link : Google Search Architecture Diagram Overview

Google's data structures are optimized so that a large document collection can be crawled, indexed, and searched with little cost. Although, CPUs and bulk input output rates have improved dramatically over the years, a disk seek still requires about 10 ms to complete. Google is designed to avoid disk seeks whenever possible, and this has had a considerable influence on the design of the data structures.

1. BigFiles

BigFiles are virtual files spanning multiple file systems and are addressable by 64 bit integers. The allocation among multiple file systems is handled automatically. The BigFiles package also handles allocation and deallocation of file descriptors, since the operating systems do not provide enough for our needs. BigFiles also support rudimentary compression options.


The repository contains the full HTML of every web page. Each page is compressed using zlib (see RFC1950). The choice of compression technique is a tradeoff between speed and compression ratio. We chose zlib's speed over a significant improvement in compression offered by bzip. The compression rate of bzip was approximately 4 to 1 on the repository as compared to zlib's 3 to 1 compression. In the repository, the

Repository Data Structure

documents are stored one after the other and are prefixed by docID, length, and URL as can be seen in Figure. The repository requires no other data structures to be used in order to access it. This helps with data consistency and makes development much easier; we can rebuild all the other data structures from only the repository and a file which lists crawler errors.

3. Document Index

The document index keeps information about each document. It is a fixed width ISAM (Index sequential access mode) index, ordered by docID. The information stored in each entry includes the current document status, a pointer into the repository, a document checksum, and various statistics. If the document has been crawled, it also contains a pointer into a variable width file called docinfo which contains its URL and title. Otherwise the pointer points into the URLlist which contains just the URL. This design decision was driven by the desire to have a reasonably compact data structure, and the ability to fetch a record in one disk seek during a search

Additionally, there is a file which is used to convert URLs into docIDs. It is a list of URL checksums with their corresponding docIDs and is sorted by checksum. In order to find the docID of a particular URL, the URL's checksum is computed and a binary search is performed on the checksums file to find its docID. URLs may be converted into docIDs in batch by doing a merge with this file. This is the technique the URLresolver uses to turn URLs into docIDs. This batch mode of update is crucial because otherwise we must perform one seek for every link which assuming one disk would take more than a month for our 322 million link dataset.

4. Lexicon

The lexicon has several different forms. One important change from earlier systems is that the lexicon can fit in memory for a reasonable price. In the current implementation we can keep the lexicon in memory on a machine with 256 MB of main memory. The current lexicon contains 14 million words (though some rare words were not added to the lexicon). It is implemented in two parts -- a list of the words (concatenated together but separated by nulls) and a hash table of pointers. For various functions, the list of words has some auxiliary information which is beyond the scope of this paper to explain fully.

5. Hit Lists

A hit list corresponds to a list of occurrences of a particular word in a particular document including position, font, and capitalization information. Hit lists account for most of the space used in both the forward and the inverted indices. Because of this, it is important to represent them as efficiently as possible. We considered several alternatives for encoding position, font, and capitalization -- simple encoding (a triple of integers), a compact encoding (a hand optimized allocation of bits), and Huffman coding. In the end we chose a hand optimized compact encoding since it required far less space than the simple encoding and far less bit manipulation than Huffman coding. The details of the hits are shown in Figure.

Our compact encoding uses two bytes for every hit. There are two types of hits: fancy hits and plain hits. Fancy hits include hits occurring in a URL, title, anchor text, or meta tag. Plain hits include everything else. A plain hit consists of a capitalization bit, font size, and 12 bits of word position in a document . Font size is represented relative to the rest of the document using three bits (only 7 values are actually used because 111 is the flag that signals a fancy hit). A fancy hit consists of a capitalization bit, the font size set to 7 to indicate it is a fancy hit, 4 bits to encode the type of fancy hit, and 8 bits of position. For anchor hits, the 8 bits of position are split into 4 bits for position in anchor and 4 bits for a hash of the docID the anchor occurs in. This gives us some limited phrase searching as long as there are not that many anchors for a particular word. We expect to update the way that anchor hits are stored to allow for greater resolution in the position and docIDhash fields. We use font size relative to the rest of the document because when searching, you do not want to rank otherwise identical documents differently just because one of the documents is in a larger font.

Forward and Reverse Indexes and the Lexicon

The length of a hit list is stored before the hits themselves. To save space, the length of the hit list is combined with the wordID in the forward index and the docID in the inverted index. This limits it to 8 and 5 bits respectively (there are some tricks which allow 8 bits to be borrowed from the wordID). If the length is longer than would fit in that many bits, an escape code is used in those bits, and the next two bytes contain the actual length.

6. Forward Index

The forward index is actually already partially sorted. It is stored in a number of barrels (we used 64). Each barrel holds a range of wordID's. If a document contains words that fall into a particular barrel, the docID is recorded into the barrel, followed by a list of wordID's with hitlists which correspond to those words. This scheme requires slightly more storage because of duplicated docIDs but the difference is very small for a reasonable number of buckets and saves considerable time and coding complexity in the final indexing phase done by the sorter. Furthermore, instead of storing actual wordID's, we store each wordID as a relative difference from the minimum wordID that falls into the barrel the wordID is in. This way, we can use just 24 bits for the wordID's in the unsorted barrels, leaving 8 bits for the hit list length.

7. Inverted Index

The inverted index consists of the same barrels as the forward index, except that they have been processed by the sorter. For every valid wordID, the lexicon contains a pointer into the barrel that wordID falls into. It points to a doclist of docID's together with their corresponding hit lists. This doclist represents all the occurrences of that word in all documents.

An important issue is in what order the docID's should appear in the doclist. One simple solution is to store them sorted by docID. This allows for quick merging of different doclists for multiple word queries. Another option is to store them sorted by a ranking of the occurrence of the word in each document. This makes answering one word queries trivial and makes it likely that the answers to multiple word queries are near the start. However, merging is much more difficult. Also, this makes development much more difficult in that a change to the ranking function requires a rebuild of the index. We chose a compromise between these options, keeping two sets of inverted barrels -- one set for hit lists which include title or anchor hits and another set for all hit lists. This way, we check the first set of barrels first and if there are not enough matches within those barrels we check the larger ones.
Was this article helpful?
Thanks! Your feedback helps us to improve


  1. it's C language, how the algorithm implemented?

  2. There are many algorithms in c++ but if you want to study this you must study very hard!

  3. This is a really good read for me, Must admit that you are one of the best blogger I ever saw.Thanks for posting this informative article.

  4. Good – I would definitely pronounce, impressed along with your website. I did no trouble navigating through many of the tabs as well as related information became truly easy to do to access.


Make in India